

International Journal of Engineering Researches and Management Studies SPECTRAL AND THERMAL PROPERTIES OF TB³⁺ DOPED IN ZINC LEAD LITHIUM BOROTENGSTEN TELLURITE GLASSES S. L. Meena

Ceremic Laboratory, Department of physics, Jai Narain Vyas University, Jodhpur 342001(Raj.) India

ABSTRACT

Glass sample of Zinc Lead Lithium Borotengsten Tellurite (35-x) TeO₂: 10ZnO: 10Li₂O:10PbO: 15Wo₃:20 B₂O₃: x Tb₂O₃. (where x=1,1.5,2 mol%) have been prepared by melt-quenching technique. The amorphous nature of the prepared glass samples was confirmed by X-ray diffraction. The absorption spectra of three Tb³⁺ doped zinc lead lithium borotengsten tellurite glasses have been recorded at room temperature. The various interaction parameters like Slater-Condon parameters F₂, Lande' parameter (ξ_{4t}), nephelauexetic ratio (β '), bonding parameter (b^{1/2}) and Racah parameters E^k (k=1, 2, 3) have been computed. Judd-Ofelt intensity parameters Ω_{λ} ($\lambda = 2, 4, 6$) and laser parameters have also been calculated. The spectroscopic quality factor related with the rigidity of the glass system is also discussed.

Keywords: Tengsten tellurite glasses, Energy interaction parameters, Optical properties, Judd-Ofelt analysis

1. INTRODUCTION

Rare-earth ions doped glasses are very attractive and have drawn a great deal of interest in the fields of photonics and optoelectronic materials development [1-4].Tellurite glasses are very promising materials for laser and non-linear applications in optics, due to some of their important characteristic features, such as high refractive index and low phonon maxima [5-7]. Tellurite glass has a low melting point and is nonhygroscopic, which is an advantage when compared to borate and phosphate glasses. These types of glasses are extremely stable against devitrification, nontoxic and resistant to moisture for long periods of time [8]. In recent years, optical properties of rare earth (RE) doped luminescent materials have been widely investigated and found to have important applications such as lasers, fiber amplifiers, full-color display devices and white light emitting diodes [9-14].Comparing with halide and sulfide glasses, oxide glasses are considered to be with more stable chemical durability and higher phonon energies [15,16].

The aim of the present study is to prepare the Tb^{3+} doped zinc lead lithium borotengsten tellurite glass with different Tb_2O_3 concentrations. The absorption spectra, fluorescence spectra of Tb^{3+} of the glasses were investigated. The Judd-Ofelt theory has been applied to compute the intensity parameters Ω_{λ} (λ =2, 4, 6). These intensity parameter have been used to evaluate optical properties such as spontaneous emission probability, branching ratio, radiative life time and stimulated emission cross section.

2. EXPERIMENTAL TECHNIQUES

Preparation of glasses

The following Tb^{3+} doped Tellurite glass samples (35-x) TeO₂: 10ZnO: 10Li₂O:10PbO: 15Wo₃:20 B₂O₃: x Tb₂O₃. (where x=1,1.5, 2) have been prepared by melt-quenching method. Analytical reagent grade chemical used in the present study consist of TeO₂, Wo₃, Li₂O, B₂O₃, ZnO, PbO and Tb₂O₃. They were thoroughly mixed by using an agate pestle mortar. then melted at 900^oC by an electrical muffle furnace for 2h., After complete melting, the melts were quickly poured in to a preheated stainless steel mould and annealed at temperature of 200^oC for 2h to remove thermal strains and stresses. Every time fine powder of cerium oxide was used for polishing the samples. The glass samples so prepared were of good optical quality and were transparent. The chemical compositions of the glasses with the name of samples are summarized in Table 1.

Table 1

 Chemical composition of the glasses

 Sample
 Glass composition (mol %)

 ZLLBTT (UD)
 35TeO₂: 10ZnO: 10Li₂O:10PbO: 15Wo₃:20 B₂O₃

 ZLLBTT (TB1)
 34TeO₂: 10ZnO: 10Li₂O:10PbO: 15Wo₃:20 B₂O₃:1 Tb₂O₃.

 ZLLBTT (TB1.5)
 33.5TeO₂: 10ZnO: 10Li₂O:10PbO: 15Wo₃:20 B₂O₃: 1.5 Tb₂O₃.

ZLLBTT (TB 2) 33TeO₂: 10ZnO: 10Li₂O:10PbO: 15Wo₃:20 B₂O₃: 2 Tb₂O₃ ZLLBTT (UD) -Represents undoped Zinc Lead Lithium Borotengsten Telluritespecimen. ZLLBTT (TB) -Represents Tb³⁺ doped Zinc Lead Lithium Borotengsten Tellurite glass specimens.

3. THEORY

3.1 Oscillator Strength

The spectral intensity is expressed in terms of oscillator strengths using the relation [17].

$$f_{\text{expt.}} = 4.318 \times 10^{-9} \varepsilon (v) \, \mathrm{d} \, v$$
 (1)

Where, ε (v) is molar absorption coefficient at a given energy v (cm⁻¹), to be evaluated from Beer–Lambert law.

Under Gaussian Approximation, using Beer-Lambert law, the observed oscillator strengths of the absorption bands have been experimentally calculated [18], using the modified relation:

$$P_{\rm m}=4.6 \times 10^{-9} \times \frac{1}{cl} \log \frac{I_0}{I} \times \Delta \upsilon_{1/2}$$
(2)

Where c is the molar concentration of the absorbing ion per unit volume, l is the optical path length, $logI_0/I$ is optical density and $\Delta v_{1/2}$ is half band width.

3.2. Judd-Ofelt Intensity Parameters

According to Judd [19] and Ofelt [20] theory, independently derived expression for the oscillator strength of the induced forced electric dipole transitions between an initial J manifold $|4f^{N}(S, L) J\rangle$ level and the terminal J' manifold $|4f^{N}(S',L')J'>$ is given by:

$$\frac{8\Pi^2 mc\bar{\upsilon}}{3h(2J+1)} \frac{1}{n} \left[\frac{\left(n^2+2\right)^2}{9} \right] \times S(J,J^{\cdot})$$
(3)

Where, the line strength S(J, J') is given by the equation

$$\begin{split} S (J, J') = & e^{2} \sum \Omega_{\lambda} <\!\! 4f^{N}(S, L) J \| U^{(\lambda)} \| 4f^{N}(S', L') J'\!\!>\!\! 2 \\ \lambda = & 2, 4, 6 \end{split}$$

3)

In the above equation m is the mass of an electron, c is the velocity of light, v is the wave number of the transition, h is Planck's constant, n is the refractive index, J and J' are the total angular momentum of the initial and final level respectively, Ω_{λ} ($\lambda = 2, 4, 6$) are known as Judd-Ofelt intensity parameters.

3.3 Radiative Properties

The Ω_{λ} parameters obtained using the absorption spectral results have been used to predict radiative properties such as spontaneous emission probability (A) and radiative life time (τ_R), and laser parameters like fluorescence branching ratio (β_R) and stimulated emission cross section (σ_p).

The spontaneous emission probability from initial manifold $|4f^{N}(S', L') J'>$ to a final manifold $|4f^{N}(S, L) J>|$ is given by:

A [(S', L') J'; (S, L) J] =
$$\frac{64 \pi^2 \nu^3}{3h(2f+1)} \left[\frac{n(n^2+2)^2}{9} \right] \times S(f', \bar{f})$$
 (4)

Where, S (J', J) = $e^2 \left[\Omega_2 \right] U^{(2)} = 2 \Omega_4 U^{(4)} = 2 \Omega_6 U^{(6)} = 2$

The fluorescence branching ratio for the transitions originating from a specific initial manifold $|f^N(S', L') J\rangle$ to a final many fold $|f^N(S, L) J\rangle$ is given by

$$\beta [(S', L') J'; (S, L) J] = \sum \frac{A[(S' L)]}{A[(S' L') J'(\bar{S} L)]}$$
(5)

Where, the sum is over all terminal manifolds.

The radiative life time is given by

$$\tau_{rad} = \sum A[(S', L') J'; (S,L)] = A_{Total}^{-1}$$
 (6)

Where, the sum is over all possible terminal manifolds. The stimulated emission cross -section for a transition from an initial manifold $|f^{N}(S', L')J\rangle$ to a final manifold

 $|f^{N}(S, L) J >|$ is expressed as

$$\sigma_p(\lambda_p) = \left[\frac{\lambda_p^4}{8\pi c n^2 \Delta \lambda_{eff}}\right] \times A[(S', L')J'; (\bar{S}, \bar{L})\bar{J}]$$
(7)

Where, λ_p the peak fluorescence wavelength of the emission band and $\Delta \lambda_{eff}$ is the effective fluorescence line width

3.4 Nephelauxetic Ratio (β) and Bonding Parameter (b^{1/2})

The nature of the R-O bond is known by the Nephelauxetic Ratio (β') and Bonding Parameter ($b^{1/2}$), which are computed by using following formulae [21, 22]. The Nephelauxetic Ratio is given by $\beta' = \frac{v_g}{(8)}$

Where, v_g and v_a refer to the energies of the corresponding transition in the glass and free ion, respectively. The values of bonding parameter ($b^{1/2}$) is given by

$$b^{1/2} = \left[\frac{1-\beta'}{2}\right]^{1/2}$$
(9)

4. RESULT AND DISCUSSION

4.1 XRD Measurement

Figure 1 presents the XRD pattern of the sample contain - B_2O_3 which is show no sharp Bragg's peak, but only a broad diffuse hump around low angle region. This is the clear indication of amorphous nature within the resolution limit of XRD instrument.

Fig. 1: X-ray diffraction pattern of TeO2: ZnO: Li2O: PbO: Wo3: B2O3

4.2 Scanning electron microscopy (SEM)

SEM image explores the smooth surface of the sample. This smooth surface indicates that the amorphous behavior of the glass matrix and also we cannot identified any grain boundaries from the surface morphological image of the host ZLLBTT glass sample as shown in Fig. 2

Fig. 2 SEM of Tb³⁺doped ZLLBTT (01) glass

4.3 Thermal Property

Figure 3 shows the thermal properties of ZLLBTT glass from 300° C to 1000° C. From the DSC curve of present glasses system, we can find out that no crystallization peak is apparent and the glass transition temperature T_g are 350,450 and 581 respectively. The T_g increase with the contents of Tb₂O₃ increase. We could conclude that thermal properties of the ZLLBTT glass are good for fiber drawing from the analysis of DSC curve.

Fig.3: DSC curve of ZLLBTT (TB) glasses.

4.4 Absorption Spectrum

The absorption spectra of Tb^{3+} doped ZLLBTT (TB 01) glass specimen has been presented in Figure 3 in terms of optical density versus wavelength (nm). Five absorption bands have been observed from the ground state ${}^{7}F_{6}$ to excited states ${}^{5}D_{4}$, (${}^{5}D_{3}$, ${}^{5}G_{6}$), ${}^{5}L_{10}$,

 $({}^5D_2,\,{}^5G_4,\,{}^5G_5)$ and ${}^5L_9\,$ for $Tb^{3+}doped$ ZLLBTT glasses.

Fig.4: Absorption spectrum of Tb³⁺doped ZLLBTT (01) glass

The experimental and calculated oscillator strengths for Tb^{3+} ions in zinc lead lithium borotengsten tellurite glasses are given in Table 2.

Energy from ⁷ F ₆	level	Glass ZLLBT(TB01)		Glass ZLLBT(TB1.5)		Glass ZLLBT(TB02)	
		P _{exp} .	P _{cal} .	P _{exp} .	P _{cal} .	P _{exp} .	P _{cal} .
$^{5}D_{4}$		0.57	0.061	0.54	0.070	0.51	0.073
${}^{5}D_{3}, {}^{5}G_{6}$		0.87	0.38	0.84	0.40	0.81	0.42
${}^{5}L_{10}$		1.58	1.14	1.55	1.17	1.52	1.18

Table 2: Measured and calculated oscillator strength ($P_m \times 10^{+6}$) of Tb³⁺ions in ZLLBTT glasses

© International Journal of Engineering Researches and Management Studies

${}^{5}\text{D}_{2}, {}^{5}\text{G}_{4}, {}^{5}\text{G}_{5}$	1.92	0.57	1.90	0.59	1.87	0.60
⁵ L9	2.17	0.998	2.14	1.017	2.11	1.032
r.m.s. deviation		0.8829		0.8404		0.8032

Computed values of F_2 , Lande's parameter (ξ_{4f}), Nephlauxetic ratio(β') and bonding parameter($b^{1/2}$) for Tb³⁺ doped ZLLBTT glass specimen are given in Table 3.

Table 3. F ₂ , ξ_{4f} , β' and $b^{1/2}$ parameters for Terbium doped glass specimen									
Glass Specimen	F ₂	ξ_{4f}	β'	b ^{1/2}					
Tb ³⁺	400.26	1820.87	0.9703	0.1219					

In the present case the three Ω_{λ} parameters follow the trend $\Omega_2 > \Omega_6 > \Omega_4$. The spectroscopic quality factor (Ω_4 / Ω_6) related with the rigidity of the glass system has been found to lie between 0.6559 and 0.6607 in the present glasses.

The value of Judd-Ofelt intensity parameters are given in Table 4

Glass Specimen	$\Omega_2(pm^2)$	$\Omega_4(\text{pm}^2)$	$\Omega_6(\mathrm{pm}^2)$	Ω_4 / Ω_6	References
ZLLBTT (TB01)	5.920	1.698	2.578	0.6559	P.W.
ZLLBTT (TB1.5)	7.553	1.602	2.632	0.6087	P.W.
ZLLBTT (TB02)	7.946	1.758	2.661	0.6607	P.W.
BTN (DY)	13.26	2.34	4.01	0.5835	[23]
ZPNT(DY)	5.66	0.84	2.17	0.3871	[24]

Table4: Judd-Ofelt intensity parameters for Tb³⁺ doped ZLLBTT glass specimens

The values of Ω_4 / Ω_6 for glasses studied are given in Table 4. Tb³⁺ doped ZLLBTT glasses are having larger value of (Ω_4 / Ω_6) than [BTN (DY) and ZPNT (DY)]. It shows that ZLLBTT (TB) glasses are a kind of better optical glass.

4.5 Fluorescence Spectrum

The fluorescence spectrum of Tb³⁺doped in Zinc Lead Lithium Borotengsten Tellurite

glass is shown in Figure 4. There are four bands observed in the Fluorescence spectrum of Tb^{3+} doped Zinc Lead Lithium Borotengsten Tellurite glass. The wavelengths of these bands along with their assignments are given in Table 5. Fig. (5), Shows the fluorescence spectrum with four peaks (${}^{5}D_{4} \rightarrow {}^{7}F_{6}$), (${}^{5}D_{4} \rightarrow {}^{7}F_{5}$), (${}^{5}D_{4} \rightarrow {}^{7}F_{4}$) and (${}^{5}D_{4} \rightarrow {}^{7}F_{3}$), respectively for glass specimens.

Fig.5: fluorescence spectrum of Tb³⁺doped ZLLBTT (01) glass

Transition		ZLLBTT TB 01				ZLLBTT TB 1.5				ZLLBTT TB 02			
	λ_{max}	$A_{rad}(s^{-1})$	β			$A_{rad}(s^{-1})$	β	σ		$A_{rad}(s^{-1})$	β	σ_p	
	(nm			σ_p	$\tau_R(\mu s)$			(10^{-20})				(10^{-20})	
)			(10-				cm ²)	$\tau_R(\mu s)$			cm^2)	$\tau_R(\mu s)$
				20									
				cm^2)									
${}^{5}\text{D}_{4} \rightarrow {}^{7}\text{F}_{6}$	488	2344.66	0.098	0.32		2696.25	0.09	0.373		2820.40	0.09	0.3866	
			8	99			27	2			22		
${}^{5}\text{D}_{4} \rightarrow {}^{7}\text{F}_{5}$	550	16643.1	0.701	2.77	42.13	20849.2	0.71	3.460	34.39	21938.1	0.71	3.625	32.69
		0	2	2		0	69			0	72		
${}^{5}D_{4} \rightarrow {}^{7}F_{4}$	582	1628.01	0.068	0.55		1685.52	0.05	0.571		1776.29	0.05	0.5978	
			6	87			80	2			81		
	625	3119.49	0.131	0.76]	3851.56	0.13	0.931		4052.63	0.13	0.9762	
${}^{5}D_{4} \rightarrow {}^{7}F_{3}$			4	00			24	4			25		

Table 5. Emission peak wave lengths (λ_{max}), radiative transition probability (A_{rad}), branching ratio (β), stimulated emission cross-section(σ_p) and radiative life time(τ_R) for various transitions in Tb³⁺doped ZLLBTT glasses.

5. CONCLUSION

In the present study, the glass samples of composition (35-x) TeO₂: 10ZnO: 10Li₂O:10PbO: 15Wo₃:20 B₂O₃: x Tb₂O₃ (where x=1, 1.5, 2mol %) have been prepared by melt-quenching method. Judd-Ofelt intensity parameters Ω_{λ} (λ =2, 4, 6) are evaluated from the intensities of various absorption bands of optical absorption spectra. The radiative transition probability is highest for (${}^{5}D_{4} \rightarrow {}^{7}F_{5}$) transition and hence it is useful for laser action. The stimulated emission cross section (σ_{p}) has highest value for the transition (${}^{5}D_{4} \rightarrow {}^{7}F_{5}$) in all the glass specimens doped with Tb³⁺ ion. This shows that (${}^{5}D_{4} \rightarrow {}^{7}F_{5}$) transition is most probable transition.

References

- 1. Seshadri,M., Barbosa,L.C., Cordeiro,C.M.B., Radha,M.,Sigoli,F.A., Ratnakaram,Y.C. (2015) .Study of optical absorption, visible emission and NIR-vis luminescence spectra of Tm^{3+}/Yb^{3+} , Ho^{3+}/Yb^{3+} and $Tm^{3+}/Ho^{3+}/Yb^{3+}$ doped tellurite glasses, J. Lumin.166, 8–16
- 2. El-Mallawany, R. Tellurite Glasses Handbook, Physical Properties and Data; CRC Press: Boca Raton, FL, USA, 2002; p. 540.
- 3. El-Desoky, M.M.; Al-Assiri, M.S. (2007). Structural and Polaronic transport properties of semiconducting CuO-V₂O₅-TeO₂ glasses. Mater Sci. Eng. B, 137, 237–246.
- 4. Leal, J.J., Narro-García, R., Desirena, H., Marconi, J.D., Rodríguez, E., Linganna, K., et al. (2015), Spectroscopic properties of tellurite glasses co-doped with Er³⁺ and Yb³⁺, J. Lumin. 162, 72–80,
- 5. Mingming Xing, Yunbei Ma, Xixian Luo, Fu Yao, Tao Jiang, Hong Wang, Xiaolong Duan, (2014). Design and achieving of multicolor upconversion emission based on rare-earth doped tellurite, J. Rare Earths 32, 394–398,
- 6. Chowdari, B.V.R.; Kumari, P.(1996). Synthesis and characterization of silver borotellurite glasses. Solid State Ionics . 86, 521–526.
- 7. Babu, P., Martín, I.R., Venkataiah, G., Venkatramu, V., Lavín, V., Jayasankar, C.K. (2016). Bluegreen cooperative upconverted luminescence and radiative energy transfer in Yb3+-doped tungsten tellurite glass, J. Lumin. 169, 233–237
- 8. Durga, D.K.; Veeraiah, N. (2003). Role of manganese ions on the stability of ZnF₂–P₂O₅–TeO₂ glass system by the study of dielectric dispersion and some other physical properties. J. Phys. Chem. Solids. 64, 133–146.
- 9. Kaur, N., Khanna, A., Gónzález-barriuso , M., González, F., Chen, B. (2015). Effects of Al³⁺, W⁶⁺, Nb⁵⁺ and Pb²⁺ on the structure and properties of borotellurite glasses, J. Non Cryst. Solids 429, 153–163
- 10. Stambouli, W., Elhouichet, H., Ferid, M. (2012). Study of thermal, structural and optical properties of tellurite glass with different TiO₂ composition, J. Mol. Struct. 1028 39–43.
- 11. Hasim, N., Rohani, M. S. and Sahar, M. R. (2016). Structural Characteristics of Er^{3+} and Nd^{3+} doped Lithium Niobate Tellurite Glass. Materials Science Forum, 846: 126-130.
- 12. Stambouli, W., Elhouichet, H., Gelloz, B., Feid, M. (2013). Optical and spectroscopic properties of Eudoped tellurite glasses and glass ceramics, 138, 201–208.

- 13. Zhang, J., Dai, S., Wang, G., Zhang, L., Sun, H., Hu, L. (2005). Investigation on upconversion luminescence in Er³⁺/Yb³⁺ co-doped tellurite glasses and fibers, Physics Letters A. 345, 409–414.
- 14. Reza Dousti, M. and Raheleh Hosseinian, S. (2014). Enhanced upconversion emission of Dy³⁺-doped tellurite glass by heat-treated silver nanoparticles. Journal of Luminescence, 154: 218-223.
- 15. Huang, B., Zhou, Y., Cheng, P., Zhou, Z., Li, J. and Yang, G. (2016). The 1.85 μm spectroscopic properties of Er³⁺/Tm³⁺ co-doped tellurite glasses containing silver nanoparticles. Journal of Alloys and Compounds, 686: 785-792.

 $[\]ensuremath{\mathbb{O}}$ International Journal of Engineering Researches and Management Studies